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Abstract. Cross sections for compound-nuclear reactions are required for many applications.
The surrogate nuclear reactions method provides an indirect approach for determining cross
sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise.
Current implementations of the method provide useful cross sections for (n,f) reactions, but need
to be improved upon for applications to capture reactions.

1. Introduction
Compound nuclear reactions play an important role in many applications. Their cross sections
are required input for astrophysical models that describe stellar evolution and nucleosynthesis
and for modeling processes that are relevant to generating energy. Cross sections for neutron
capture, neutron-induced fission, and other processes are required. Often the reactions of
interest involve short-lived or highly radioactive target nuclei, which makes it difficult or
impossible to measure their cross sections directly. To determine the cross sections of interest,
indirect methods, such as inverse-kinematics experiments with radioactive beams, combined
with theoretical treatments, are becoming increasingly important. This paper discusses recent
progress of the surrogate nuclear reaction method, an indirect approach for determining cross
sections for nuclear reactions a + A — B* — ¢+ C, that proceed through the formation of
a compound nucleus (B*). The method can be applied when the target is too short-lived to
allow for a direct measurement, but a projectile-target combination can be found so that the
compound nucleus of interest, B*, can be produced in an alternative reaction d + D — B* + b.
In Sec. 2, representative examples from the fields of nuclear astrophysics and nuclear energy
are given to illustrate the importance of cross sections for reactions on unstable targets. In
Section 3 an outline of the surrogate approach is given. Some examples of successful applications
of the method to (n,f) reactions are shown in Sec. 4. The limitations of presently-employed
approximations are illustrated in Sec. 5 for capture reactions.

2. Compound reactions for astrophysics and nuclear energy
Cross sections for compound-nuclear reactions are required input for astrophysical models and
nuclear-energy simulations.

2.1. Nucleosynthesis of heavy elements
An important goal of nuclear astrophysics research is to explain the origin of the heavy elements
(A>56). We have acquired a basic, but incomplete, understanding of the processes that generate



the energy in stars such as our sun, that drive stellar evolution and that are responsible for the
synthesis of the elements [1]. Nucleosynthesis of heavy elements beyond %6Fe is known to take
place primarily by neutron capture on lighter seed nuclei in the s (slow neutron-capture) and r
(rapid neutron-capture) processes [1, 2, 3], with other processes contributing to the abundances
of some specific isotopes. Models of these processes predict relative isotopic abundances for
specific astrophysical scenarios. They require nuclear physics input and are constrained by
measured isotopic abundances.

The s process proceeds via neutron captures and beta decays through nuclides in and very
near the valley of stability. Of particular interest to models of this process are neutron captures
on s-process branch points, unstable nuclei with a life time long enough to allow the s process
to proceed by either neutron capture or 3 decay. The strength with which one path dominates
over the other depends on environmental variables, such as neutron density, temperature, and
pressure, as well as on nuclear properties, specifically capture rates and beta-decay life times.
Information on the astrophysical conditions can be inferred if the nuclear properties are known.

Beyond being important for gaining a more detailed description of the s process environments,
reliable s-process abundances are crucial for our understanding of the r (rapid neutron-capture)
process. The r process takes place in an environment with high temperature and high neutron
flux. In such conditions the average time between neutron captures is much shorter than the
life time for B-decay and reaction flows can proceed to very neutron-rich nuclei. Open questions
include the exact path along the nuclear chart of the neutron captures and beta decays involved
and the astrophysical site(s) of the process. Typically, r-process abundances are inferred by
subtracting calculated s-process abundances from measured total abundances. This requires
detailed calculations to predict s-process abundances, and reliable cross sections for neutron
captures along the s-process path. Beta-decay half lives and nuclear masses, which determine
nucleon separation energies, are considered to be the most important nuclear physics inputs for
r-process models, as they determine the neutron capture path in scenarios that assume (n, )
and (7,n) reactions to be in equilibrium with each other, but models that do not invoke the
equilibrium assumption require neutron capture rates for thousands of unstable nuclei.

2.2. Nuclear energy

The world-wide growing demand for energy, coupled with increasing concern over pollution
resulting from burning of fossil fuels, has resulted in renewed interest in nuclear energy. To
exploit nuclear energy in a clean, efficient, and safe manner, concerns regarding reactor safety,
waste handling, proliferation risks, and economic competitiveness have to be addressed.

Advanced nuclear-energy systems may recycle actinides produced in conventional reactors
or take advantage of alternative fuel cycles. A thorium-based fuel cycle, for instance, is
appealing, since it produces less radiotoxic heavy transurianum isotopes than the conventional
uranium-plutonium fuel cycle; thorium is also more abundant in the earth’s crust than uranium.
An important component of the research and development for these reactor concepts is the
improvement of the fundamental nuclear data [4]. The transuranic nuclides, for example, play a
much more prominent role in these new designs and yet the available cross-section data is quite
limited. In addition, neutron-capture reactions could be used to incinerate long-lived fission
fragments and therefore limit the challenges associated with the reactor waste.

Sensitivity studies [5] indicate that high-quality, reliable cross-section data are needed for
neutron-induced reactions for a wide variety of radioactive isotopes covering neutron energies
from thermal up to tens of MeV. In particular, capture and fission reactions on many of the
isotopes of thorium, uranium, plutonium, and the minor actinides (such as 23"Np, 241=243Am,
and 2#4~24Cm), as well as certain long-lived fission fragments. Many of these cross sections
are extremely challenging to measure directly but significantly contribute to uncertainties in the
reliable design and safe operation of a nuclear-energy system.



Some relevant cross sections, such as the (n, f) cross sections for 2! Am, 243-244Cm have
already been determined with the surrogate approach [6, 7, 8, 9, 10]. It is anticipated that the
surrogate reaction method will continue to provide valuable cross-section results on isotopes for
which there is limited, poor-quality, or no data of use for nuclear-energy applications.

3. The surrogate idea

The appropriate formalism for the description of a compound-nuclear reaction a + A — B* —
¢+ C is a statistical one [11]. Based on Bohr’s hypothesis of the independence of formation
and decay of the compound nucleus (CN), the cross sections are calculated in the framework
of the Hauser-Feshbach formalism, which properly takes account of the conservation of angular
momentum and parity in the reaction:

Oax(Ba) = Y 05N (Bew, J,m) GV (Bea, J, ) (1)
J,

with « and x denoting the relevant entrance and exit channels, a + A and ¢ + C, respectively.
The excitation energy FE., of the compound nucleus, B*, is related to the center-of-mass energy
E, in the entrance channel via the energy needed for separating a from B: E, = E — S,(B).
In many cases the formation cross section 0§V = o(a + A — B*) can be calculated to a
reasonable accuracy by using optical potentials, while the theoretical decay probabilities GEN
for the different decay channels y are often quite uncertain. The latter are difficult to calculate
accurately since they require knowledge of optical models, level densities, and strength functions
for the various possible exit channels. The objective of the surrogate method is to determine or
constrain these decay probabilities experimentally.
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Figure 1. Schematic representation of the “desired” (left) and “surrogate” (right) reaction
mechanisms. The basic idea of the surrogate approach is to replace the first step of the desired
reaction, a+ A, by an alternative (surrogate) reaction, d+ D — b+ B*, that populates the same
compound nucleus. The subsequent decay of the compound nucleus into the relevant channel,
c+ C, can then be measured and used to extract the desired cross section.

In the surrogate approach, the compound nucleus B* is produced by means of an alternative
(“surrogate” ), direct reaction, d + D — b+ B*, and the desired decay channel x(B* — ¢+ C)
is observed in coincidence with the outgoing particle b (see Fig. 1). The probability for forming
B* in the surrogate reaction (with specific values for F.,, J, ) is F; (;C N(E.y, J, ), where § refers
to the entrance channel reaction D(d,b). The quantity

P(SX(Eex) - ZF(SCN(Eex, Ja 7T) GgN(Eea:a J, 77) ) (2)
J

which gives the probability that the compound nucleus B* was formed with energy FE., and
decayed into channel y, can be obtained experimentally, by measuring Ngs, the total number



of surrogate events, and Nj,, the number of coincidences between the direct-reaction particle
and the observable that identifies the relevant exit channel: P;;p (Eez) = Nsy/Nses . Here, €5
denotes the efficiency for detecting the outgoing direct-reaction particle b and the exit channel
x- To simplify the notation, we suppress the dependence of the coincidence probability P, (Fes)
on the angle 6 of the outgoing direct-reaction particle b.

The distribution F{N(E.., J,7), which may be very different from the CN spin-parity
populations following the absorption of the projectile a in the desired reaction, has to be
determined theoretically, so that the branching ratios GQN (Ees, J,m) can be extracted from the
measurements. In practice, the decay of the CN is modeled and the GgN (Ees, J, ™) are obtained
by adjusting parameters in the model to reproduce the measured probabilities Ps, (Ee;) [12, 13].
Subsequently, the sought-after cross section can be obtained by combining the calculated cross
section 0§V (E,y, J, ) for the formation of B* (from a+A) with the extracted decay probabilities
GgN(Eex, J, ) for this state, see Eq. 1.

Weisskopf-Ewing Approximation. Under certain circumstances, the decay of the intermediate
equilibrated system, the compound nucleus, becomes independent of its angular momentum and
parity, and the cross section for the reaction factorizes into a simple product of a formation cross
section and a decay probability for the exit channel of interest [11]:

Uax(Ea) = UgN(Eew) g$N<Eer:)7 (3)

where oSN (E.,) = I oSN (Eeg, J,m) is the reaction cross section describing the formation
of the compound nucleus in the desired reaction and QQN (Eey) denotes the J™-independent
decay probability for the exit channel x. This is the Weisskopf-Ewing (WE) limit of the Hauser-
Feshbach theory [11]. In the context of surrogate reactions, the Weisskopf-Ewing approximation
greatly simplifies the application of the method: It becomes straightforward to obtain the J™-
independent branching ratios QQN (Eez) from measurements of Ps,(Ee;) [= ggN (Eey) since
>uxF N (Eeg, J,m) = 1] and to calculate the desired reaction cross section. Calculating the
direct-reaction probabilities F 50 N (Eesz, J,m) and modeling the decay of the compound nucleus
are no longer required. Most applications to date invoke the Weisskopf-Ewing approximation.

4. Neutron-induced fission reactions

The surrogate approach was first employed in the 1970s to estimate neutron-induced fission
cross sections from transfer reactions. These early applications of the method made use of
the Weisskopf-Ewing approximation: The transfer reactions of the 1970s [14, 15] produced (n,f)
cross section estimates for various actinide targets which agreed with direct measurements (where
available) to about 10-20% for incident neutron energies above 1 MeV. Discrepancies at lower
energies were later attributed to large uncertainties in the low-energy optical model employed,
and the use of the Weisskopf-Ewing approximation [12, 13].

More recently, a French group has carried out surrogate experiments at the Institut de
Physique Nucléaire (IPN) in Orsay to determine cross sections for neutron-induced reactions on
several minor actinide nuclei relevant to the thorium-uranium fuel cycle and the transmutation of
nuclear waste [6, 7, 10]. The transfer reactions 232Th(*He,x) and ?*3Am(3He,x), with x=a,t,d,p,
were employed to obtain (n,f) and (n,7y) cross sections for Th and Pa targets [6, 7] and (n,f) cross
sections for Cm and Am targets [10], respectively. The analyses assumed that the Weisskopf-
Ewing approximation is valid. The extracted (n,f) cross sections were found to be consistent
with known directly-measured cross section measurements, where these were available. They
proved useful for resolving controversies between discrepant measurements and for providing
data for previously unavailable energy regions.

The STARS/LiBerACE collaboration in the United States has carried out a number of
experiments at the 88-inch cyclotron at Lawrence Berkeley National Laboratory. Light-ion



beams have been used for inelastic scattering, charge exchange, and one- or two-neutron transfer
reactions. Fission cross sections, e.g. the 23"Np(n,f) cross section [16], have been determined
using the Weisskopf-Ewing approximation or a variant thereof, the surrogate ratio method.

The Surrogate Ratio approach [17, 18, 19] requires the (approximate) validity of the Weisskopf-
Ewing limit. The ratio R(E) = 0qa,y,/Tasy, Of the cross sections of two CN reactions is measured,
using two surrogate experiments. An independent determination of the cross section oa,y,
can then be used to deduce 04,,,. An advantage of using the ratio method is the fact that
it eliminates the need to accurately measure the total number of surrogate reaction events
(Ns), since one determines the ratio of coincidence probabilities Py, /Ps,y,, rather than an
absolute probability Ps, = Njy/Ns. Furthermore, there are indications that small to moderate
deviations from the WE limit cancel in this approach [17]. Cross sections for (n,f) reactions
extracted in the ratio approximation have been tested for consistency with results from direct
measurements, complementary surrogate experiments [19, 20|, and theoretical simulations [17].
For (n,f) reactions one typically finds that the spin-parity mismatch between the desired and
surrogate reactions has a much smaller effect on the extracted cross section than in an approach
that uses the WE approximation and absolute probabilities. Also, deviations caused by pre-
equilibrium effects are diminished, thus improving the overall agreement between extracted and
expected cross sections.
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Figure 2. Fission cross sections obtained from surrogate ratio measurements. The 23¥Pu(n,f)
cross section (left panel) was determined relative to the known 23*U(n,f) and 23°U(n,f) cross
sections [24]. The weighted average of the two measurements is compared to several evaluations;
the solid line represents a calculation based on the new data. The 23°U(n,f) cross section (right
panel) was determined relative to the known 23>U(n,f) cross section [21]; here it is compared to
the result of an earlier surrogate measurement [22] and to the ENDF/B-VII evaluation [23].

Two recent applications of the ratio approach are shown in Figure 2. The 23¥Pu(n,f) cross
section, which is needed for reactor applications and for transmutation studies, was recently
determined using inelastic scattering surrogate reactions [24]. Ressler et al [24] produced the
compound nuclei 239Pu*, 23°U*, and 236U* via inelastic a scattering. Surrogate ratio analyses
yielded the desired 23¥Pu(n,f) cross section relative to both the 23*U(n,f) and the 23°U(n,f)
cross sections. Since the latter two are known, the 233Pu(n,f) cross section could be extracted;
the weighted average of both measurements is shown in the left panel of Figure 2. The two
measurements are in good agreement with each other for 5-20 MeV and the averaged cross
section agrees well with previous, direct, measurements in the 5-10 MeV range; it is somewhat
higher (by less than 20%) than those at about 15 MeV. The ratio measurement does not, and



is not expected to, produce highly-accurate fission results at low energies (< 5 MeV here), due
to the underlying Weisskopf-Ewing assumption. It does, however, provide continuous data for
neutron energies from 5 to 20 MeV, and supplement earlier measurements, which were sparse
in the energy regime around 10-15 MeV.

The right panel of Figure 2 shows the 23°U(n,f) cross section (open circles), which was recently
determined relative to the known 23°U(n,f) cross section [21]. The CN 240U* and #6U* were
produced via the two-neutron transfer reactions 233U (180,60) and 234U (*%0,160), respectively,
and 60 — fission fragment coincidence events were counted. The extracted 29U (n,f) cross section
agrees well with the result of an earlier surrogate experiment (open squares, from Ref. [22]); both
are lower than the ENDF /B-VII evaluation (open triangles). No direct measurements exist, since
the half life of 22U is only 23.4 minutes.

The literature and the above examples indicate that (n,f) cross sections extracted from
surrogate data are typically consistent with direct measurements (where available) and/or other
surrogate measurements, despite the approximations used. In addition, calculations, which test
the approximation schemes employed in the analyses of surrogate fission data [17], illustrate
the level of accuracy that one can under reasonable circumstances expect from the surrogate
approach. Discrepancies between indirectly and directly measured cross sections are often
less than 10%. The largest deviations are found at low energies, where the Weisskopf-Ewing
approximation is not expected to be valid; in those cases, it becomes necessary to account for
the differences in the spin-parity distributions ocurring in the desired and surrogate reactions.

5. Capture reactions

Capture cross sections provide specific challenges for the surrogate approach. First, the level of
precision required for the cross section is often higher than in the fission case: Recent advances
in modeling the astrophysical s process have resulted in requests to determine capture cross
sections within a few percent and nuclear-energy applications require cross sections to within
5-10% [25, 5]. Achieving an accuracy of a few percent is challenging, but constraining an
unknown (n,y) cross section to within 20-30% should be considered a meaningful improvement
of the situation, in particular since current cross section evaluations often show large deviations
from each other. Secondly, it is the low-energy regime that is relevant to many applications.
For s-process applications, for example, one needs cross sections from a few keV to about 200
keV. Both calculations and measurements have shown that this is the energy range for which
the Weisskopf-Ewing approximation typically breaks down.

Theoretical studies have been carried out to assess the feasibility of obtaining capture
cross sections from surrogate measurements and to determine promising candidates for such
measurements. The strategy followed in these investigations is to extract information from
Hauser-Feshbach calculations that have been adjusted to reproduce known cross sections
(capture and, where applicable, fission). The branching ratios (channel probabilities),
G)?N (E, J, ) that enter Egs. 1 and 2 can be calculated via this procedure; the Weisskopf-Ewing
limit is reached when the branching ratios are approximately equal.

Overall, the studies show that the probability for a compound nucleus to decay via v emission
(x = 7) depends sensitively on the spin-parity population of the nucleus prior to decay. The
dependence of the y-branching ratios on the Jr distribution is greater than that found previously
for fission (y = fission). Calculations for representative Zirconium, Gadolinium, and Uranium
nuclei showed a strong dependence of the ~ branching ratios on the spins populated in the
compound nucleus. The effect was particularly strong for the 92Zr nucleus, which has a closed
proton subshell (Z=40) and a nearly-closed neutron shell (N=52 ~ 50) [26]. A comparison
with the results for Gadolinium and Uranium confirms the notion that the higher level densities
present in the deformed rare-earth and actinide regions do reduce the sensitivity of the y-decay
probabilities to compound-nuclear spin-parity distributions and nuclear-structure effects [27].



For Gadolinium, we demonstrate in Fig. 3a that the (n,y) cross sections obtained from a
Weisskopf-Ewing analysis of surrogate data can differ significantly from the expected ‘true’ cross
section. Shown are the results of a Weisskopf-Ewing analysis of the *Gd(p, p’y) coincidence
data measured by Scielzo et al [28] (symbols with error bars) and theory results of a sensitivity
study by Escher and Dietrich [27] (dashed and dotted curves). The '®>Gd(n,7y) cross section
extracted from the indirect measurement is a factor of 2-3 larger than the directly-measured
cross section (solid curve). It falls, for the most part, between the theoretical curves. The latter
were obtained by combining calculated branching ratios and schematic spin-parity disctributions
to simulate surrogate measurements, P57 (E) =3, FEN(E, J, ) GgN(E, J,m), and carrying

&y . .
out a WE ‘analysis’ to obtain the desired cross section, aKf’S’m(E) =N (E)P5y"(E), where
o¢N(E) denotes the CN formation cross section. The range of cross sections, a,‘i[’/f’Sim(E),

obtained by varying the simulated spin distributions within reasonable limits provides a measure
of the uncertainty in the extracted cross section due to the use of the WE approximation.

10— T T T 3 4 T T T
Erisian 155 9 r 157 155
TSIl a) Gd(ny) 1 L b) o] ~'Gd(n,y)l/o[ "Gd(n,y)]
3L -
— - S r
= | E B E
= £
g g
5 g
2 57
2 @2 [
LE) 0.1 2 i
E Surrogate measurement (2+4>0+) 3 s L
C Reference cross section 1
| RN Distribution 1
L= Distribution 2 \
[ |————" Distribution 3 A =
Distribution 4 “\; F
\
ol . | AN [
0.01 0

0.1 1 X
Neutron Energy [MeV] Neutron Energy [MeV]

Figure 3. a) Weisskopf-Ewing estimate for the !%°Gd(n,7y) cross section. The cross section
extracted from a surrogate %6Gd(p,p’y) measurement [28] is compared to WE ‘analyses’ of
simulated surrogate experiments [27], for different CN spin-parity distributions, and to the
reference cross section, which is a fit to directly-measured cross sections. b) Cross section ratio
obtained from (measured and simulated) surrogate data, compared to the ratio of evaluated
cross sections. The spin-parity distributions used in the simulations are from Ref. [27], Fig. 10.

The studies of the Gadolinium region also show that the WE approximation overestimates
the (n,y) cross section by factors which depend on the nucleus under consideration [27, 28]. For
the ¥5Gd(n,y) and ®"Gd(n,y) cross sections, the differences are large, despite the structural
similarities of the relevant nuclei. Consequently, the ratio approach results in 1*>Gd(n,y) cross
sections that are too large by up to a factor two for energies below about E,, = 0.7 MeV (Fig. 3b).
The effect is seen in both the theoretical sensitivity study and the experimental results. Overall,
the ratio approach was found to reduce, but not eliminate, the effect of the spin-parity mismatch
on the extracted cross sections for energies where the WE assumption is a poor approximation.

6. Concluding Remarks

Indirect approaches have to be developed in order to provide much-needed nuclear data, in
particular cross sections for reactions on unstable isotopes. We have reviewed recent application
of the surrogate nuclear reaction method, which aims at providing cross section information for
compound nuclear reactions. Past applications of the surrogate method have demonstrated that
it can provide useful cross section estimates for neutron-induced fission of actinides. Similar
success in applications to neutron capture for a range of isotopes would be very valuable and



remains to be demonstrated. Most analyses of the fission data carried out so far have made
approximations that are likely to break down in situations relevant for extracting (n,y) cross
sections from surrogate measurements, making this a more challenging reaction to tackle. The
examples discussed show this breakdown for capture reactions on Gadolinium isotopes. They
underscore the need to take into account the different spin-parity distributions that occur in the
desired and surrogate reactions. Work to address this issue is underway [29]
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